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Abstract. The interface spin waves at the (001) intcrface between a ferromagnet and
an antiferromagnet, both with body-centred crystal structures, were investigated in the
context of the Heisenberg model. The transfer matrix technique was employed to derive
the Green functions at the interface jayers. Interface spin waves which are localized
in the neighbourheod of the interface were found to exist. The spectrum of these
bound states was calculated for a number of different sets of parameters. The possible
extensions of the present work were discussed.

1. Introduction

The investigation of magnetic excitations or spin waves at the interface between
magnetic materials has received extensive attentions [1-15] in the past decade.
Interface spin waves (ISW) were found in many different configurations and
compositions of materials. Camlcy and Maradudin [1] have considered the ISW at
an interface between two ferromagnetic materials in the dipole—dipole interaction
dominant regime, ie. the magnetostatic waves. Interesting properties, such as
the non-reciprocality of the propagation of 1sw, etc were found. In another work,
Yaniv [4] investigated the 1SW of an exchange-coupled biferromagnetic interface and
predicted that either 0, 1 or 2 branches of i1sw may exist for an (100) interface
formed by two simple cubic crystals with the same lattice constant. An extension to
the same kind of study by Xu et a/ [5] and Wang and Lin [6] revealed that the ISW
are sensitively dependent on the geometric structures of the two materials forming
the interface. In addition to these studies performed on the interface between two
ferromagnetic materials, Mata and Pestana [7]} have examined the magnetic properties
of an interface between two antiferromagnets. Most recently, Che et al [8] studied
the 1w in a bilayer of two sublattice ferrimagnets and found that two branches of
ISW may exist.

The investigation of ISW on other kinds of compositions has also been carried
out in the past few years. Hinchey and Mills [9] have considered a multi-interface
magnon state in a hypothetical ferromagnetic/antiferromagnetic superlattice. Novel
properties, such as spin reconstructions, etc were found.

In this paper, we concentrate on the ISW at an interface between materials
with different spin structures, ie. the interface formed by a ferromagnet and an
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antiferromagnet. Tb our knowledge, there is no investigation on such a problem in
the current literature. The couplings between spins in the two materials and across
the interface are taken to be of exchange type. The study of dipole-dipole dominated
spin waves in such a structure can be carried out easily following the procedures in
[1]. We will use the transfer matrix technique [12-14] to study the encrgy spectrum
of 1sw. We can see from the formalism below that in comparison with other Green
function methods [8], transfer matrix techniques are more powerful and more clear
in physical meaning in dealing with layered structures. Specifically, we will assume
that the crystal structures of the two materials are body-centred tetragonal lattices
with the same lattice constant and we will consider the (001} surface between them.

2. Formalism and results

We now consider the interface between two semi-infinite Heisenberg magnets, one is
ferromagnetic and the other is antiferromagnetic. The system is schematically shown
in figure 1. The structure of the antiferromagnet can be divided into two sublattices
which are themselves simply cubic. The (001) surface of the body-centred tetragonal
antilerromagnet has spins from only one of the sublattices. We denote the atomic
layers by integers n = 0,41,242, ..., with the interfaces being » = 0 and n = 1,
respectively. '
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Figure 1. Schematic dizgram of the system Figore 2. The surface states spectra of the (001)

considered in this paper. The open circles are the
spins of the ferromagnetic material. The black and
shaded circles are the spins of the up and down
sublattices of the antiferromagnet, respectively. The
interfaces are denoled by n = 1 and n = 0. The
coupling constant across the interface is assumed
to be ferromagnelic, thus the spins are lined up
across the interface,

surfaces of a ferromagnet and an antiferromagnet.
We have taken J) = = J, §1 = 5 = § and
k = (kz,0). The area between the solid curves
is the bulk states region for the {erromagnet, that
between the dashed curves is the bulk states region
for the antiferromagnet. Curves (a) and (b) are
the specira of the surface staies of the ferromagnet
and antiferromagnet, respectively.

In each material, the interaction between the spins is taken to be of Heisenberg

type. The Hamiltonian can be expressed as

H = ZJ,.J.S,. - 85
(i)

M)
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where (ij) means that only the nearest-neighbour interaction between spins is
considered. J;; is the exchange integral between spins at sites ¢ and 7, and in
this paper it takes the form

Jy >0, for antiferromagnetic material
J, <0, for ferromagnetic material
i = o . 2)
J; <0, for ferromagnetic interface coupling
J; >0, for antiferromagnetic interface coupling.

Here we only consider the case where the exchange integral across the interface is
different from the bulk, though more complicated situations may be easily included
in the present work. The spins in the two materials are represented by S, and
8,, respectively. For simplicity, we assume the interface coupling constant to
be ferromagnetic. The situation for antiferromagnetic coupling can be extended
straightforwardly.

Following the usual procedures [11], we define the following relevant double-time
Green functions:

G (1, t') = ((sf(f)- S ()
G, ') = STk S5
Go(1,7) = ((S1(2); S5 ("))
G (1, #') = (ST(1): S7(1))
where the superscripts e and b refer to the up and down sublattices of the
antiferromagnetic material respectively, and ¢ is the index for the ferromagnetic
material.
After carrying out the Fourier transformation for the Green functions in time

and space coordinates, we can write down the equations of motion for the Green
functions in k—w space:

3

(w— Uy +8J,8)aif — Upy(k)ght + 8J,S1v(k)gsy = 25, 4)
{w+ Uy + 8J,8))gir — Upv(k)gZh, — 84,5 v(R)gif =0 &)
{w +2U1)g%fn,n + Ul‘i’(k)gzm-:,n + Ul'¥“~)ﬂ'2m+1 =0 (m21) ()

(w=2U)938 11 — Uy (R)g3E, o = Upy(R)ghe 120 =0 (m 2 1L,n ¥ 2m + 1) (7)
(w+2Us)gm n — Upv(K)gmo1,n — Uav(R)g55 10, =0 (m < —1,n# m) (8)
(w+ Uy + 871 S)gis — Upy(k)gliy — 8J;Syv(R)glf = 25, )

where y(k) = cos(%kxa)cos(ikya), k is a two-dimensional vector parallel to the
interface and @ is the lattice distance. U; = 8J;§;, i=1 or 2. gij  is the
corresponding component of the Fourier transformations of the Greer function
defined by equation (3). These equations can be solved by introducing the following
transfer functions [12-14] between different atomic layers:

(W) = g8/, (W) =gl oS . (m3 1) (10)
ﬁ(w)=g:rfn/gm In (ms"'l) (11)

where o;{w) and a,(w) represent the propagation of spin waves between the
two sublattice layers of the antiferromagnetic material and S{w) represents the
propagation within the ferromagnetic material.
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Making use of equations (6), (7) and (8), we can show that these transfer functions
satisfy the following equations

(w=2Uy)ay(w) = Upy(k) + Upy(k)ag{w)on(w) (12)
(w +2U)en(w) = =Uyy(k) - Upy(k) oy (w)op(w) (13)
(w+2U3)B(w) = Upy(k) + Upy(k)B(w)? (14)
which can be solved directly, i.e.
oy(w) = ={(w + 20, }/(w - 20U} )] ey (w) (15)

w? = 4UL £ {(w? — 4UINw? — 4UF[1 - v(E))]}V?
2U v (kY (w + 2U))

B(w) = {2{Us} —w £ [(w = 21U31)" — 4UF(k)*]'/2}/ (2{U |9 (K)). (17)

The energy band of the bulk spin waves can be obtained when the square root

expressions in the transfer functions are negative. Thus from e (w) or a,{w) we
can reproduce the band edges of the antifcrromagnet, i.e.

ay(w) =

(16)

2U(1 - v(k))? < w <20, (18)
and from B{w) we know the energy band for a bulk ferromagnet
2\UN(1 = [v(R)]) € w < 2[U (1 4 |2 (k)]). (19)

These expressions are exactly the same as those given in the standard textbook [15].
In order to study the 1SW, we must know the diagonal Green function at the
interface. From equations (4) and (5), we obtain

91t = 251/(w = Uy + 84,5 = Upy(R)ay(w) + 8J,5v(k) T(w)) (20)

where T'(w) describes the propagation of spin waves across the interface and
gor = T(w)gif. Explicitly, T(w) can be expressed in terms of J; and 8(w), ie.

T{w) = 8J; Spy(k) /(w = [Us| + 8J; Sy + [Usfr(k)B(w)) 21)

where we have used g&%; = 8(w)ggf, which can be casily derived from equation (8)
by setting m = -1 and using the definition of 3(w).

Before we start to discuss the Isw, let us look at an intermediate problem: the
spin waves when the interface system is decoupled, ie. the surface system of a
antiferromagnet and a ferromagnet. The Green functions in this case may be easily
obtained by letting J; = 0 in the above equations. Without any difficulty, we get

g =28 /(w - U, - Upy(k)ay({w)) (22)
g5 = 25, /(w — (U] + |Uplv(k)B(w)). _ (23)

In terms of these diagonal elements, the density of states (DOS) of the spin waves for
the two surfaces can be writien as

Di(w) = _ﬁl-; 3 Im g () (24)
]

where N is the number of spins in an atomic plane.

In real calculations, there is always the problem of choosing the correct sign in
the expressions for the transfer functions. In order to be meaningful, we have chosen
the branch for the square roots such that D*(w) > 0 and have found that this is
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equivalent to the criteria that |o{w}e,(w)? < 1 and {8(w)|? < 1, which guarantees
the convergence of the Green function in each layer.

From equations (22) and (23), we know that the bulk spin wave has energy when
the a(w)s and 3(w) have imaginary values, while the surface spin waves occur when
the denominator in g(w)s are zeroes. It can be shown that both the surface systems
have surface states which are localized in the surface region and have energy below
the corresponding bulk spectrum. We show in figure 2 the surface spin wave spectra
{16] together with the bulk ones.

When the two semi-infinite systems are brought together, the 1SW are determined
by equation (20). It is easy to see that the energy region of the ISW is a combination
of the bulk modes of the two semi-infinite materials, which occurs when the transfer
functions a(w)s or G(w) have imaginary parts. The states in this energy region may
propagate throughout the whole crystal if their energy falls into the region where
the energy of the two bulk systems overlaps. However, if the energy lies in the bulk
energy region of one material but ouiside that of the other, then the 1Sw can only
propagate without decaying in the former material but is damped exponentially when
in the latter, and vice versa.

Besides the 1sw mentioned above, there are interfacce states which are mainly
localized in the interface region and decay when propagating into the internal parts
of the two materials. It can be shown that these bound states have energy which
lies outside both the bulk spectra region of the two materials and their energy is
determined by the poles of the Green function, i.e.

w—U, +8J;5, — Uy (k)ay(w) + 8, Sy(k)T{w) = 0. (25)

Generally, it is hard to determine an analytic solution for this equation. We
have studied it nomerically and have found that if |J,| is sufficiently small, the 1sw
approaches the surface states of the decoupled system. But when |J;| gets bigger,
there exists one interface state which is above the bulk modes of the two materials.
The increase of the coupling constant raises the eacrgy of interface modes. The
results are schematically shown in figures 3 and 4.

The diagonal Green functions on the other layers in the neighbourhood of the
interface can also be obtained in the same way illustrated above. To do this, the
equations of motion for the new diagonal Green functions must be solved. The
results involve new transfer functions which describe the propagation of spin waves
from the interface to the interior of the two materials. When the ISW occurs, the
modes of these transfer functions are less than one, demonstrating a characteristic
decay for the 1sw [17].

In conclusion, the interface structure between ferromagnetic and antiferromag-
netic materials usually supports only onc branch of interface spin waves when the
interface coupling is strong. This spin wave branch is of optical characteristic, mean-
ing that the spin fluctuations are suppressed at the surfaces of the two materials due
to the introduction of the interface. In the case of small interface coupling, two
branches of interface spin waves appear, which stem {rom those of the individual
surface systems of the two materials.

A simple extension of the present work is to include the differences between
the coupling constants near the interface and the bulk ones. We may extend the
present work to the study of ISW at an interface formed by materials with different
crystal structures as well as different spin structures, e.g. the interface between a
two-sublattice ferrimagnet and a ferromagnet or a system in which the (001) surface
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Figure 3. The spectrum of the 1sw with J; = J» =  Figure 4. The spcctrum of the 15w, curve (a), with
J, 81 =5, =5 and k= (k:,0). Curve {(a) was parameters Jy = J, = J, §; = 15, = 25 and
oblained when the interface coupling |J;] = 3J |J7] = 2J. As in figure 3, the bulk spin wave
and curve (b) when {Jy| = 2J. Notice that the spccira are aiso displayed.

increase in the strength of the coupling constant

results in higher energy interface states, The bulk

spectra of the 1wo materials are also presented for

comparison, see figure 2.

of the antifcrromagnet considered in this paper matches with the (100) surface of
a ferromagnet with simple cubic structure, etc. The effect of anisotropies can be
taken into account by setting the interplane coupling constant to be different from
the intraplane ones in the current framework. The inclusion of an cxternal applied
magnetic field and the effect of pinning on the interface layers is the subject of our
next work [18).
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